Asymptotic Approximation of Convex Curves; the Hausdorff Metric Case
نویسنده
چکیده
where κ(t) is the curvature of C given as a function of the arclength t and l the length of C. See also McClure and Vitale [7] and for asymptotic formulae for approximation with respect to the Hausdorff metric in higher dimensions R. Schneider [8],[9] and P.M. Gruber [5]. In this article we extend the asymptotic formulae (1) by deriving the second terms in the asymptotic expansions of δ(C,P i n) and δ(C,P n). This complements results derived for approximation with respect to the symmetric difference metric in [6].
منابع مشابه
New best proximity point results in G-metric space
Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...
متن کاملAsymptotic Approximation of Convex Curves
L. Fejes Tóth gave asymptotic formulae as n → ∞ for the distance between a smooth convex disc and its best approximating inscribed or circumscribed polygons with at most n vertices, where the distance is in the sense of the symmetric difference metric. In this paper these formulae are extended by specifying the second terms of the asymptotic expansions. Tools are from affine differential geometry.
متن کاملBest proximity point theorems in Hadamard spaces using relatively asymptotic center
In this article we survey the existence of best proximity points for a class of non-self mappings which satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [A. Abkar, M. Gabeleh, Best proximity points of non-self mappings, Top, 21, (2013), 287-295] which guarantees the existence of best proximity points for nonex...
متن کاملGeodesic metric spaces and generalized nonexpansive multivalued mappings
In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...
متن کاملPartial Regularity of Mean-Convex Hypersurfaces Flowing by Mean Curvature
In this paper we announce various new results about singularities in the mean curvature flow. Some results apply to any weak solution (i.e., any Brakke flow of integral varifolds.) Our strongest results, however, are for initially regular mean-convex hypersurfaces. (We say a hypersurface is mean-convex if it bounds a region such that the mean curvature with respect to the inward unit normal is ...
متن کامل